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1. INTRODUCTION

An interesting problem in engineering is the static and dynamic analysis of plates and shells
supported on elastic foundations [1]. Most available works employ various two
dimensional plate or shell theories in which certain simpli"cations are introduced, and are
limited to isotropic materials [2}5]. It is well known that errors introduced in the simpli"ed
theories will become notable if the thickness of the plate or shell is relatively thick, especially
for anisotropic materials [6, 7]. Three-dimensional elasticity solutions are thus necessary; in
fact, they can be used to exactly predict the behaviors of plates and shells, and hence
be benchmarks for the range of applicability of corresponding studies based on
two-dimensional and/or "nite element modelling. Recently, Chen et al. [8] employed
a decomposition technique to study precisely the free vibrations of transversely isotropic
cylinders and cylindrical shells. In particular, a Bessel function solution with complex
argument was directly used for the complex eigenvalue case.

In this study, we use the method presented in Chen et al. [8] to investigate the free
vibration of a cylindrical panel supported on an elastic foundation, which is represented by
a Kerr model [9, 10], see Figure 1. It is shown that the Kerr model can be reduced to either
a Pasternak model or a Winkler one by selecting certain values of foundation parameters.
Exact frequency equation is derived with numerical calculations presented and compared to
those obtained by shell theories.

2. BASIC FORMULATION AND THE SOLUTION

In cylindrical co-ordinates (r, h, z), the fundamental relations between stresses and
displacements of a transversely isotropic body are
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Figure 1. A cylindrical panel on a Kerr foundation.
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where c
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are "ve independent elastic constants, and
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)/2. The equations of motion in cylindrical co-ordinates read as
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where o is the density.
The following displacement decomposition technique is employed [8]:
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Considering the free vibration of a simply supported cylindrical panel [11], we seek the
solution of three displacement functions t, G and = in the following form:

t (r, h, z, t)"R2t1 (m) sin (mnf ) cos (nnh/a) exp (iut),

G(r, h, z, t)"R2GM (m) sin (mnf ) sin (nnh/a) exp (iut),

=(r, h, z, t)"R=M (m) cos (mnf ) sin (nnh/a) exp (iut), (4)
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where m"r/R, f"z/¸, ¸ is the length of the cylindrical shell, R"(a#b)/2 is the mean
radius, a and b are the inner and outer radii, respectively, a is the center angle, m and n are
the axial and circumferential half-wave numbers, respectively, and u is the circular
frequency. Utilizing equations (1), (3) and (4), one obtains from equation (2) a Bessel
equation of tM and a coupled set of two Bessel equations of GM and=1 . Details are omitted
and the reader is referred to Chen et al. [8]. We only give the corresponding solutions as
follows:
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where Jb and Yb are Bessel functions of the "rst and second kinds, respectively, while Ib and
Kb are modi"ed Bessel functions of the "rst and second kinds, respectively, A

1
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two arbitrary constants, and,
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where v
2
"Jc

44
/o is the velocity of elastic wave. In addition, k

2
and k

3
(assuming, without

loss of generality, that Re [k
2
]*Re [k

3
]*0) are two roots of the following equation:

j4#BM j2#CM "0, (8)
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depend on the nature of the roots of equation (8) and are given in Table 1. One obtains for
Case 1 for example,
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where A
i

and B
i
(i"2, 3) are arbitrary constants.

3. FREQUENCY EQUATIONS

Substituting equations (4) and (6) into equation (3), and these in turn into equation (1), we
have

uN
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"(!bt1 /m!GM @ ) sin(mnf) sin(bh) exp (iut),
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For the purpose of comparison, we "rst consider the uncoupled free vibration of

a transversely isotropic cylindrical panel. In this case, both the convex and concave sides of
the panel are traction free, i.e.,

p
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rz
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rh"0 (r"a, b). (11)

Using the results obtained in the preceding section, we can get the frequency equation of the
uncoupled free vibration as follows:

DE1
ij
D"0 (i, j"1, 2,2, 6), (12)

where

E1
11
"!( f

1
!f

2
)bJ@b (k

1
t
1
)/t

1
#( f

1
!f

2
)bJb(k1t1)/t21 ,

E1
13
"!f

1
IAb(k2

t
1
)!f

2
I@b(k2

t
1
)/t

1
#( f

2
b2/t2

1
!f

3
t
L
q
1
)Ib (k2

t
1
),

E1
15
"!f

1
IAb(k3

t
1
)!f

2
I@b(k3

t
1
)/t

1
#( f

2
b2/t2

1
!f

3
t
L
q
2
)Ib (k3

t
1
),



LETTERS TO THE EDITOR 1001
E1
21
"!t

L
bJb (k1t1)/t1 ,

E1
23
"(!t

L
#q

1
)I@b(k2

t
1
),

E @
25
"(!t

L
#q

2
)I@b(k3

t
1
),

E1
31
"!JAb(k1

t
1
)#J@b (k1t1)/t1!b2Jb (k1t1)/t21 ,

E1
33
"!2bI@b(k2t1)/t1#2bIb(k2t1)/t21 ,

E1
35
"!2bI@b(k3t1)/t1#2bIb(k3t1)/t21 , (13)

in which t
1
"a/R"1!t*/2, t

2
"b/R"1#t*/2, and t*"(b!a)/R is the

thickness-to-mean radius ratio of the panel. Obviously, E1
ij

( j"2,4,6) can be obtained by
just replacing (modi"ed) Bessel functions of the "rst kind in E1

ij
( j"1,3,5) with the ones of

the second kind, respectively, while E1
ij

(i"4,5,6) can be obtained by just replacing t
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in E1
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(i"1,2,3) with t
2
, respectively. It is noted that the elements in equation (12) depend on the

sign of k2
1
and the roots of equation (8); we here only give the corresponding forms for k2
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'0

and for Case 1.
Now, we consider the coupled free vibration problem. Because of the e!ect of the

foundation, the boundary conditions at convex surface r"b become
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where P is the reactive force of the foundation, which satis"es the following equation for
a Kerr model [9, 10]:
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where D"L2/Lz2#(1/r2 )L2/Lh2, i and 0 are the spring constants of the upper and lower
spring layers, respectively, and k is the shear constant of the shear layer. From equations
(10), (14) and (15), we get the coupled free vibration frequency equation as follows:
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seen that if we take p "0 in equation (17), then the e!ect of a Kerr foundation on the

3
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frequencies will be identical with that of a Pasternak foundation, in which only two
foundation parameters are involved [2, 3]. Moreover, if we take p

2
"p

3
"0, then

frequency equation (16) degenerates to the one of a panel on a Winkler foundation [1]. It is
also noted that if p"0, frequency equation (16) will be the same as the uncoupled one, i.e.,
equation (12).

4. NUMERICAL EXAMPLES

The "rst numerical example is the free vibration of a simply supported isotropic
cylindrical panel supported on a Kerr foundation. For isotropic materials, we have
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where E is Young's modulus and l the Poisson ratio.
The parameters are selected as l"0)3, n"2, a"1203, p

2
"0)01, p

3
"3)0, and

mR/¸"0)4. The lowest non-dimensional natural frequencies X are listed in Table 2 for
several di!erent combinations of t* and p

1
. The exact results are compared with those

calculated by three typical shell theories [12}14].
It is obviously shown that the discrepancy between the membrane theory and the exact

one becomes larger with the increase of the thickness-to-mean radius ratio, t*. From the
results, we can further observed that for the thicker panel (t*"0)1 or 0)3), the frequency
TABLE 2

¹he lowest natural frequencies of an isotropic cylindrical panel on a Kerr foundation. (l"0)3,
n"2, a"1203, mR/¸"0)4, p

2
"0)01, p

3
"3)0)

t* p
1

Theories

P* TKs TNt MA

0)01 0)002 0)33553 0)33468 0)33521 0)33231
0)006 0)47823 0)47711 0)47748 0)47546
0)01 0)58500 0)58368 0)58399 0)58234
0)05 1)17693 1)17453 1)17468 1)17389

0)05 0)005 0)35814 0)34653 0)35925 0)28413
0)01 0)39644 0)38526 0)39678 0)33036
0)05 0)60844 0)59805 0)60572 0)56466

0)1 0)005 0)49994 0)46887 0)50885 0)25716
0)01 0)51434 0)48366 0)52257 0)28344
0)05 0)60996 0)58137 0)61446 0)43047

0)3 0)005 1)17345 1)07693 1)31543 0)23748
0)01 1)17551 1)07900 1)31714 0)24726
0)05 1)19048 1)09418 1)32975 0)31008

*Present exact three-dimensional theory.
sThick shell theory that includes the e!ects of shear deformation and rotary inertia [12].
tClassical thin shell theory [13].
AMembrane theory [14].



Figure 2. Non-dimensional frequencies of a transversely isotropic cylindrical panel on a Kerr foundation.
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predicted by the classical thin shell theory (CTST) [13] is greater than the exact one. This is
identical to the well-known property of CTST for the uncoupled problem. However, for the
thinner panel, when the e!ect of the foundation is obvious, the frequency of CTST will
become smaller than the exact one. On the other hand, the frequency obtained by the thick
shell theory (TST) [12] is always smaller than the exact one. Such facts result in an
interesting phenomenon where for most cases as listed in Table 2, CTST is even more
accurate than TST. This point is very important in practical design to determine which kind
of two-dimensional shell theory should be used.

Finally, we perform the calculation of the lowest natural frequencies of a closed,
transversely isotropic, circular cylindrical shell embedded in a Kerr foundation. For closed
cylindrical shells, it is known that the center angle a"2n and the integer n must be even
since the shell vibrates in circumferential full waves. In fact, the frequency equation for
a closed cylindrical shell can be obtained by setting b"l (l"1,2,3), where l is the
circumferential full-wave number, in equation (16). The material is taken to be zinc, for
which the non-dimensional material constants are f

1
"3)9563, f

2
"0)7883, f

3
"1)1860 and

f
4
"1)5400. In calculation, we take other parameters as l"1, p

1
"0)05, t*"0)1, and

mR/¸"0)4. Figure 2 shows the variation of the non-dimensional frequency X with the
other two non-dimensional foundation parameters p

2
and p

3
. As one can see, X increases

with p
2
, but decreases with p

3
.

5. CONCLUSION

This paper studies the free vibration problem of a transversely isotropic cylindrical panel
supported on a Kerr foundation. An exact, three-dimensional frequency equation is
presented. The e!ects of foundation parameters on the natural frequencies of cylindrical
panel are numerically investigated both for isotropic and transversely isotropic materials.
In particular, results for the isotropic cylindrical panel are compared with those predicted
by three typical shell theories.
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